

St. Xavier's College – Autonomous Mumbai

Syllabus For 2nd Semester Courses in LIFE SCIENCE (June 2013 onwards)

Contents: Syllabus (theory and practicals) for Courses: S.LSC.2.01 Cell Biology S.LSC.2.02 Fundamentals of Microbiology Template for theory question paper

LIFE SCIENCE

Course No. S.LSC.2.01

(15 lectures)

F.Y.B.Sc.

Title: Cell Biology

Learning Objectives:

On completion of the course, the student must be able to:

- 1. Differentiate between prokaryotes and eukaryotes.
- 2. Students will understand the structures and basic components eukaryotic cells, with respect to membranes and organelles.
- 3. Describe the function and the composition of the plasma membrane.
- 4. Understand how the endoplasmic reticulum and Golgi apparatus interact with one another and know with which other organelles they are associated.
- 5. Understand the structure and function of the mitochondria and chloroplast.
- 6. Understand the basis and significance of mitosis and meiosis

Number of lectures: 45

UNIT I

1.	Cell as	a unit of life: Prokaryotes, Eukaryotes (plant, yeast, animal cell)	(1)
2.	Cell m	embrane:	(4)
	a.	Membrane Structure and Function	
	b.	Chemical composition of membranes	
	с.	Membrane lipids; Membrane proteins	
	d.	Functions of membranes: Transport, Cell-cell interactions, Receptors (eg;	
		insulin receptor with link to diabetes)	
	e.	Membrane Model: Fluid Mosaic Model (Freeze fracture technique)	
3.	Memb	rane transport:	(5)
	a.	Active Transport:	
		i. Uniport, Symport, Antiport	
		ii. Primary, Secondary	
	b.	Passive Transport:	
		i. Simple diffusion	
		ii. Facilitated diffusion (Carrier proteins, Channels)	
		iii. Osmosis (one example of each type of transport)	
	с.	Membrane transport associated disease : cystic fibrosis	
	d.	Bulk transport: endocytosis and exocytosis	
4.	Memb	rane junctions	(4)
	a.	Classification of junctions:	
		i. Occluding: Tight	
		ii. Anchoring: Desmosomes	
		iii. Channel- forming: Gap, Plasmodesmata	
		iv. Signal- Relaying: Chemical synapse	
5.	Cell w	all:	(1)
	a.	Structure and function of Plant Cell Wall: Primary and secondary wall.	
UNIT	II	(15 lect	ures)
1.	Ribosc	omes:	(2)

a. Structure and function of Prokaryotic and Eukaryotic ribosomes

UNIT III			
b.	Structure and function of chloroplast		
Plastids:		(2)	
b.	Mitochondria associated disease: LHON and MELAS		
Mitochondria:		(2)	
b.	Peroxisomes : Structure and Function, Zellweger syndrome		
5		(2)	
a.	Structure, Origin and Relationship with the ER		
Golgi:		(3)	
b.	SER: structure and function		
	Glycophoprin		
a.	RER: structure and role in protein synthesis and glycosylation	of proteins Eg.	
Endoplasmic Reticulum:			
	a. b. Golgi: a. b. Lysoso a. b. Mitocl a. b. Plastic a. b.	 a. RER: structure and role in protein synthesis and glycosylation of Glycophoprin b. SER: structure and function Golgi: a. Structure, Origin and Relationship with the ER b. Role in storage and secretion of glycoproteins Lysosomes And Peroxisomes: a. Lysosomes : Lysosome cycle, Functions, Tay Sachs disease b. Peroxisomes : Structure and Function, Zellweger syndrome Mitochondria: a. Structure and function b. Mitochondria associated disease: LHON and MELAS Plastids: a. Types of plastids b. Structure and function of chloroplast 	

- 1. Cytoskeletal Elements:
 - a. Microfilaments:
 - i. Structure and function in plant & animal cells (sarcomere structure)
 - ii. Microfilament associated disease: DMD
 - iii. Microtubules: Structure and role in mitotic spindle & cilia/flagella
 - iv. Intermediate filaments: Structure and function
- 2. Cell cycle and cell division
 - a. Cell cycle (G0, G1, G2, M phases) (2)
 - b. Mitosis and Meiosis and their significance (3)
- 3. Nucleus:
 - a. Structure of an interphase nucleus: nuclear membrane, nucleolus, nucleosome.
 - b. Heterochromatin & Euchromatin
 - c. Specialized chromosomes: polytene and lampbrush chromosomes

Practicals S.LSC.2.01 PR

- 1. Microscopy- Light and EM, and their resolution with respect to organelle structure, Cell junctions: EM pictures
- 2. Cytoplasmic Streaming in Hydrilla
- 3. Detection of barr body from buccal smear.
- 4. Study of Mitosis in onion root tip.
- 5. Study of eukaryotic cell morphology: onion peel and buccal smear staining
- 6. Determination of the viability of a given cell sample.
- 7. Detection of mitochondria and Starch granules in plant cell lysate.

References

- Molecular Biology of the Cell,5th Ed.(2008), B.A.Alberts, A. Johnson., J. Lewis, M. R. K. Roberts, P.Walters, Garland Science Publication
- 2. Cell and Molecular Biology-concepts and experiments-4th Ed. G.Karp, (2005), John Wiley and Sons Inc.

(6)

(4)

- 3. The World of Cell, 5th Ed.(2003), W.M. Becker, L.J. Kleinsmith, J. Hardin, Pearson Education (Singapore)
- 4. The Cell-A molecular approach, \$th Ed.(2007), G.M.Cooper, R.E. Hausman, ASM Press Washington, D.C.
- Molecular Cell Biology 6th Ed. (2008) H.Lodish, A. Berk, C.A. Kaiser, M. Krieger, M.P.Scott, A. Bretscher, H. Ploegh, P. Mortsudira, W.H. Freeman and Company, N.Y.
- 6. Cell Biology (1992) Smith and Wood, Chapman and Hall

LIFE SCIENCE

F.Y.B.Sc.

Course No. S.LSC.2.02

Title: Fundamentals of Microbiology

Learning Objectives:

On completion of the course, the student must be able to:

- 1. This course provides a working knowledge of microbes and its special techniques. Students will learn the structure and function of prokaryotic and eukaryotic micoorganisms, as well as viruses.
- 2. Describe both the nutritional and environmental conditions required for growth by microorganisms
- 3. Construct bacterial growth curves and explain the specfic phases that occur during bacterial growth.
- 4. Discuss the physical and chemical mechanisms for controlling microbial populations both in vivo and in vitro.

Number of lectures: 45

UNIT I (15 lectures) 1. Introduction to Microbiology (3) a. History of microbiology: early Microscope, Spontaneous Generation & Germ Theory b. Impact of Microorganisms in industry, agriculture, biotechnology and health. 2. Microbial diversity and Molecular Taxonomy: (3) a. Prokaryotes, eukaryotes and archaeabacteria b. Bacterial phylogeny (based on ribosomal DNA) 3. Prokaryotic cell: Cell shape, size and arrangement (6)a. bacterial cell wall: Gram positive and gram negative, b. capsule, flagella, endospores, nucleoid, plasmid 4. Archaebacteria: Classification, Structure of cell wall and cell membrane, one example of each of: Psychrophiles, Halophiles, Thermophiles and Sulfur bacteria. (3) **UNIT II** (15 lectures) 1. Viruses, Viroids and Prions (6) a. Virus structure: capsid morphology, genetic material (DNA and RNA viruses), viral envelope, classification of viruses: general features, bacterial (T4), plant (TMV) and animal viruses (Retrovirus) b. Life cycle: T4 and lambda phage. c. Viroids d. Prions e.g., scrapie 2. Fungi (4) a. Classification b. Growth and reproduction: sexual & asexual eg; yeast & neurospora. 3. Algae (2)a. Classification b. Structural Organization c. Life cycle of Chlamydomonas

d. Role of Algae in nature

- a. Classification
- b. Morphological Diversity
- c. Life cycle: Parasitic eg; Entamoeba, Non-parasitic eg; Paramoecium

UNIT III

- 1. Microbial Nutrition:
 - a. Common nutrient requirements: C, H, O₂, N, P, S
 - b. Nutritional types
 - c. Culture media: simple, complex, differential media, selective media (One eg each)
 - d. Anaerobic growth media and methods: thioglycollate medium
 - e. Laboratory culture of microorganisms: Concept of pure culture and 'consortium'
 - f. Preservation of cultures
- 2. Microbial growth:
 - a. Cell growth and Binary fission
 - b. Exponential growth: The growth curve, Generation time
 - c. Batch and Continuous culture
 - d. Factors influencing microbial growth: oxygen, temp., pH, salt
 - e. Measurements of Growth
- 3. Control of Microbial Growth
 - a. Physical agents: heat sterilization, radiation sterilization, filter sterilization
 - b. Chemical agents
 - c. Antimicrobial agents: Antibiotics (penicillin)

Practicals S.LSC.2.02 PR

- 1. Sterile techniques
- 2. Monochrome staining (curd/mouth swab/ skin swab/soil)
- 3. Gram staining
- 4. Cell Wall staining
- 5. Streak plating of soil sample suspension.
- 6. Preparation of media for yeast growth and streak plating.
- 7. Study of fungi from stale food and permanent slides of fungi.
- 8. Determination of MIC of NaCl on microbial cultures

Group Projects:

- 1. Testing the efficacy of mouth wash.
- 2. Study of bacteria from canteen food.
- 3. Effect of turmeric, aloe vera, garlic as an antibacterial agent/ disinfectants

References

- 1. Brock Biology of Microorganisms (12th Edition); Madigan, Martinko, Dunlap & Clark
- 2. Alcamo's Fundamentals of Microbiology (8th Edition); Jeffrey C. Pommerville
- 3. Microbiology-an introduction (6th Edition); Tortora, Gerard J.
- Microbiology (7th Edition) Prescott, Harley and Klein
 Principles of Microbiology (2nd edition) Ronald Atlas
- 6. Microbiology (7th edition) Prescot, Harley, Kline

(3)

(6)

(15 lectures)

(5)

(4)

Template of Theory Question paper Courses S.LSC. 2.01 & 2.02

<u>CIA I</u> – 20 marks, 45 mins. Unit I: Objectives/Short questions, not more than 2-3 marks each

<u>CIA II</u> – 20 marks, 45 mins. Unit II: Objectives/Short questions, not more than 2-3 marks each

End Semester exam – 60 marks, 2 hours

Question 1: Unit I: maximum marks per sub-question - 6 marks
20 marks to be answered out of 28-30 marks
Question 2: Unit II: maximum marks per sub-question - 6 marks
20 marks to be answered out of 28-30 marks
Question 3: Unit III: maximum marks per sub-question - 6 marks
20 marks to be answered out of 28-30 marks

<u>Mark-distribution pattern for Practical</u> <u>CIA & End Semester Practical Examination</u>

CIA per course

Q1. Any one / two practicals Q2. Journal 15 marks 05 marks

End semester Practical Examination

Any two / three practicals

30 marks