4th Semester Syllabus for Core courses Life Science – S.Y.B.Sc. St. Xavier's College (Autonomous), Mumbai. Revision September 2019

St. Xavier's College (Autonomous) Mumbai

Syllabus For 4th Semester Courses in LIFE SCIENCE

(June 2020 onwards)

Contents:

Syllabus (theory and practicals) for Courses:

SLSC0401 SLSC0402 SLSC0403 SLSC04PR Comparative Physiology II Molecular Biology

SC0403 Biostatistics and Population Genetics

)4PR Practicals

Template for theory and practical question paper Evaluation and Assessment Grid

Percent revision: 2015-16: No revision 2016-17: No revision 2017-18: 16% (0402) 2018-19: 40-50% revision to practicals 2019-20: 5% (0401) and 1% (0403)

LIFE SCIENCE

S.Y.B.Sc.

Course No.: SLSC0401

Title: Comparative Physiology- II

Learning Objectives

The course aims to:

- 1. Introduce a student to the various endocrine hormones and their role in the maintenance of homeostasis.
- 2. Help the learner understand the organization of the nervous system and the physiological principles underlying nervous function.
- 3. Provide an insight into the various mechanisms for regulation of body temperature.
- 4. Elucidate the processes of gametogenesis, reproduction and embryo development in various life forms

Self Study: Levels of organization – cells, tissues, organs, organ systems; epithelial and connective tissue

1. Endocrine glands and Hormones: Insect and Amphibian

Number of lectures: 45

UNIT I: Endocrine system

Endocrine system

2. Positive and negative feedback and Concept of Neuroendocrine coordination (1) 3. Plant hormones: Auxins, Gibberillins, Cytokinins, Abscissic acid and Ethylene (2) 4. Endocrine System in humans (7)a. Endocrine glands; Hormones – types; Hierarchical organization of the endocrine system b. Mechanism of Hormone action – hormone receptors and their up and down regulation; mode of action via membrane receptors eg. epinephrine- upto secondary messenger; intracellular receptor eg: steroid hormone c. Role of hormones in the maintenance of homeostasis: Thyroid - T3, T4, Pancreas-Insulin, glucagon i. Adrenal gland - cortex - glucocorticoids & mineralocorticoids medulla ii. epinephrine Pituitary – Anti-Diuretic Hormone (ADH) iii. 5. Temperature Regulation (3) a. Poikilothermy and Homeothermy b. Regulation of Body temperature at temperature extremes **UNIT II: Nervous and Muscular System** (15 lectures) 1. Nervous system (3) a. Evolution of the nervous system: Invertebrate to Vertebrate Brain 2. Nervous system in humans (7) a. Central Nervous System: Brain – membranes and parts; Spinal cord – sensory and motor tracts; Peripheral Nervous System: Somatic and Autonomic b. Cells of nervous tissue - Neurons, Neuroglia and Synapses c. Ion channels, Resting membrane potential and Action Potential Page 2 of 13

(15 lectures)

(2)

- 3. Muscular system
 - a. Structure of the neuromuscular junction and the mechanism of action potential generation in the skeletal muscle.
 - b. Physiology of the skeletal and smooth muscle contraction.

UNIT III: Reproductive systems and Development

- 1. Reproduction
 - a. Asexual: Budding, Parthenogenesis, Spore formation, Vegetative propagation
 - b. Sexual reproduction:
 - i. Gametogenesis- angiosperm
 - ii. Types of eggs
 - iii. Fertilization Internal and External, Hermaphroditism
 - c. Reproductive System of humans
 - i. Overview of the male and female reproductive system; Oogenesis & Spermatogenesis; Structure of sperm and eggs
 - ii. Reproductive Hormones; Female reproductive cycle
 - iii. Birth-control measures
- 2. Development
 - a. Embryogenesis in plants
 - b. Patterns of Cleavage, Blastulation and Gastrulation in Amphibians
 - c. Embryonic Development: Fertilization, Formation of Morula, Blastocyst, Implantation; Role of Hormones
 - d. Assisted Reproductive Technology

(5)

(4)

(4)

(7)

References:

- Principle of Anatomy and Physiology (2002) 10th Edition, Tortora, G. and Grabowski S. Wiley.
- 2. *Textbook of Medical Physiology* (2006) 11th Edition, Guyton, A. and Hall, J. Elsevier Saunders.
- 3. Comparative Animal Physiology (1992) Withers, P. Saunders College Publication.
- 4. *Biology* (2007) 6th Edition, Solomon, E., Berg, L. and Martin, D. Thomson Brooks/Cole.
- 5. *Biology* (2005) 7th Edition, Campbell, N. and Reece, J. Pearson, Benjamin Cummings.

LIFE SCIENCE

S.Y.B.Sc

Course No.: SLSC0402

Title: Molecular Biology

Learning Objectives:

This course aims to provide molecular understanding of the information processing pathways in the cell that lead to the expression of the genetic information in DNA.

- 1. To understand the molecular processes in DNA replication, DNA repair, transcription and translation.
- 2. To understand the molecular basis of mutations and how it leads to human genetic disorders.
- 3. To comprehend the principles of gene expression and its regulation in prokaryotes and eukaryotes.

Number of lectures: 45

Unit I: (15 le	ctures)
 DNA replication Basic structure of double-stranded DNA, Messelson and Stahl Experiment DNA replication in <i>E.coli</i> Replication of Eukaryotic Chromosomes: multiple origins, end-replication problem 	(6)
 Molecular Concept of a gene a. Transcription in <i>E. coli</i> b. Transcription in Eukaryotes 	(1) (7) (3)
 i. Types of RNA polymerases ii. RNA polymerase II transcription in brief iii. Pre-mRNA processing c. Reverse transciptase 	(1)
Unit II: (15 le	ctures)
1. Translation	(7)
 a. The Genetic Code b. Structure of ribosomes and Transfer-RNA c. Protein synthesis in <i>E. coli</i> d. Protein synthesis inhibitors eg: streptomycin, puromycin 2. Gene regulation in <i>E. coli</i> a. Lambda phage: Choice between lytic and lysogenic cycles (self study) b. Lac operon c. Trwntenhan operon 	(8)
d. Problems on Lac operon	

4th Semester Syllabus for Core courses Life Science – S.Y.B.Sc. St. Xavier's College (Autonomous), Mumbai. Revision September 2019

Unit III:

(15 lectures)

DNA damage

- 1. Mutagenic agents and their mode of action: physical X –rays and UV rays and chemical any four.
- 2. Classification of mutations: germ line versus somatic; spontaneous v/s induced; point v/s chromosomal (giving examples of *Drosophila* mutants).
- 3. Point Mutations: Base substitution: transitions, transversions; Frame-shift: addition, deletion, suppressor mutations.
- 4. Chromosomal mutations: Structural: deficiency, duplication, inversion, translocation. Numerical: aneuploidy, euploidy, concept of non-dysjunction
- 5. Human genetic disorders: Sickle cell anemia, Philadelphia chromosome, Down's syndrome, Turner's syndrome, Fragile X syndrome
- 6. DNA repair mechanisms Photo reactivation repair

References:

- 1. *Molecular Biology of the Gene* (2006) 7th Edition, Watson, J., Baker, T., Bell, S., Gann, A., Levine, M., Losick, R. Pearson Education, Inc.
- 2. *Lehninger's Principles of Biochemistry* (2008) 5th Edition, Nelson. D., Lehninger, A., Cox, M. W. H. Freeman.
- 3. Biochemistry (1999) 4th Edition, Stryer, L. W. H. Freeman.
- 4. *iGenetics A molecular approach* (2009) 3rd Edition, Russel, P. Benjamin Cummings Publication.
- 5. *Genome: The Autobiography of a Species in 23 Chapters* (2006) Ridley, M. Harper Perennial Publication.
- 6. Double Helix (1968) Watson, S. Simon and Schuster Publication (USA).

LIFE SCIENCE

S.Y.B.Sc

Course Code: SLSC0403

Title: Biostatistics and Population Genetics

Learning Objectives:

- 1. To equip students with basic statistical concepts and methods.
- 2. To introduce students to the display and communication of statistical data. This will include graphical and exploratory data analysis.
- 3. To help students understand estimation, testing and interpretation for single group summaries such as mean, median, variance, correlation and regression.
- 4. To promote an understanding of the basics of hypothesis testing, confidence intervals and the interpretation and application of commonly used statistical tests -Z, t, Chi square.
- 5. To aid in the understanding of the basic concepts of ANOVA.
- 6. To explain the Hardy-Weinberg law of equilibrium and to solve a simple Hardy-Weinberg equation to calculate genotype frequencies.
- 7. To understand the various factors that affect Hardy-Weinberg equilibrium.

Number of lectures: 45

UNIT I: Biostatistics

1.	Introduction to Biostatics: Terms used in Biostatistics, Types of Data,	(1)
2.	Presentation of Data: qualitative and quantitative	(1)
3.	Measures of Central tendency: Mean, Median, Mode; Normal and skewed	
	distributions, kurtosis	(5)
4.	Measures of Variation: range, variance, standard deviation, coefficient of variation	(4)
5.	Measures of location: Percentiles, 'z' score, probability calculations	(3)

6. Concept of sampling: random sample, sample size determination, precision (1)

UNIT II: Biostatistics

1. Analysis of data a. **Ouantitative data:** i. Normal Distribution, concept of sampling error and standard error $(\mathbf{2})$ ii. Hypothesis testing: (5) unpaired and paired't' test, Type I and Type II errors ANOVA (single factor), Tukey's post hoc test iii. (4) b. Qualitative data: i. χ^2 test as a test of association (2)Standard error of proportion ii. c. Non-parametric test: Sign test (1)

2. Concept of correlation between two variables and regression line (1)

(15 lectures)

(15 lectures)

UNIT III: Population Genetics

- Introduction to Population Genetics: Concept of gene pool; genetic diversity in populations: polymorphism and heterogeneity
- Allelic and genotypic frequencies in populations: Hardy Weinberg Law relating (3) allelic and genotypic frequencies in an ideal population: for two alleles, multiple alleles and X linked alleles; testing populations for Hardy Weinberg equilibrium
- 3. Evolutionary factors responsible for altering allelic frequencies in natural (7) populations and their effects:
 - a. Mutations
 - b. Migration
 - c. Random genetic drift
 - d. Non random mating
 - e. Natural selection: Concept of fitness and its contribution to allelic frequencies.
- 4. Numerical problems on all of the above

(2)

(15 lectures)

Reference books for Biostatistics:

- 1. *Biometry: the principles and practice of Statistics for Biology research* (1995) 4th Edition, Sokal, R. and Rahlf, H. W H Freeman.
- 2. *Biostatistical analysis* (1998) 2nd Edition, Zar, J. Prentice Hall.
- 3. Fundamentals of Biostatistics (1995) 4th Edition, Rosner, B. Duxbury Press.
- 4. *Biostatistics: A Foundation for Analysis in Health Sciences* (2005) 8th Edition, Daniel W.W. Wiley.

Reference books for Population Genetics:

- 1. *iGenetics A molecular approach* (2009) 3rd Edition, Russel, P. Benjamin Cummings Publication.
- 2. Concepts of Genetics (2006) 8th Edition, Klug, W. and Cummings, M. Prentice Hall
- 3. *Principles of Biology* (2008) 4th Edition, Brooker, R., Widmaier, E., Graham, L., Stiling, P. McGraw Hill Education.
- 4. Genetics (1985) Strickberger, M.W. Prentice Hall.

Practicals: SLSC04PR

Comparative Physiology 2:

- 1. Histological study of kidney, liver, testis, thyroid, adrenal, stomach, thymus, bone marrow and cartilage
- 2. Determination of cell viability by dye exclusion method
- 3. Total RBC count
- 4. Total WBC count
- 5. Differential WBC count
- 6. Study of the effect of minerals/ heavy metals on heart rate of Daphnia
- 7. Study of the effect of exercise/ environment on physiological parameters heart rate, blood pressure and oxygen saturation

Molecular Biology:

- 1. UV survival curve of *E. coli*
- 2. Replica plating of auxotrophic/ antibiotic resistant bacteria
- 3. Screening of antibiotic resistant mutants
- 4. UV light repair
- 5. UV dark repair
- 6. Isolation of lysozyme from egg white and its effect on Gram-positive and Gramnegative bacteria

Biostatistics and Population Genetics:

- 1. Presentation of data: qualitative and quantitative, continuous and discrete using excel sheet.
- 2. Measures of Central Tendency: mean (with assumed mean), median, mode
- 3. Measures of Location: Percentiles & probability, 'Z' score
- 4. Measures of variation: range, standard deviation
- 5. Concept of sampling: methods of sampling, importance of sample size, precision
- 6. Paired and unpaired 't' test
- 7. Standard error of proportion and χ^2
- 8. Correlation and Regression using experimental data
- 9. Study of Genetic Variation in human populations and application of Hardy Weinberg Law (preferably from data collected by students)
- 10. Study of effects of different evolutionary forces on allelic frequencies: problems

Use of MS Excel and SPSS for solving problems.

4th Semester Syllabus for Core courses Life Science – S.Y.B.Sc. St. Xavier's College (Autonomous), Mumbai. Revision September 2019

Template of Theory Question paper

Courses: SLSC0401, 0402 & 0403

<u>CIA I</u> – 20 marks, 45 mins.

Unit I: Objectives/numerical problems, not more than 5 marks each

<u>CIA II</u> – 20 marks

Unit II: Test (45 mins) /Survey /Assignment /Presentation /Poster /Essay /Review

End Semester exam - 60 marks, 2 hours

Question 1: Unit I: maximum marks per sub-question - 6 marks
20 marks to be answered out of 28-30 marks
Question 2: Unit II: maximum marks per sub-question - 6 marks
20 marks to be answered out of 28-30 marks
Question 3: Unit III: maximum marks per sub-question - 6 marks
20 marks to be answered out of 28-30 marks

Mark-distribution pattern for Practical Courses: SLSC04PR

End Semester Practical Examination	Total marks: 150		
Experiments	75 - 105 marks		
Identification	30 - 60 marks		
Journal	15 marks		

DEPARTMENT OF LIFE SCIENCES AND BIOCHEMISTRY

S.Y.B.Sc. Life Science Exam Grid Semester 4									
Course	Exam	Knowledge and Information	Understanding	Application	Analysis	Total			
	CIA I	10	7	-	3	20			
0401	CIA II	10	7	-	3	20			
	End semester	20	20	10	10	60			
Course	Exam	Knowledge and Information	Understanding	Application/Analysis		Total			
	CIA I	10	7	3		20			
0402	CIA II	10	7	3		20			
	End semester	30	20	10		60			
Course	Exam	Knowledge and Information	Understanding	Application	Analysis	Total			
	CIA I	5	5	5	5	20			
0403	CIA II	4	4	6	6	20			
	End semester	12	15	16	17	60			