

# St. Xavier's College – Autonomous Mumbai

# Syllabus For 2<sup>nd</sup> Semester Courses in Information Technology (June 2011 onwards)

Contents:

Theory Syllabus for Courses:

S.ITS.2.01 – Computer Graphics

S.ITS.2.02 – Applied Mathematics II

S.ITS.2.03 - Microprocessor and Microcontrollers

S.ITS.2.04 – Database Management Systems (DBMS)

S.ITS.2.05 – Data Communication and Network Standards

Practical Course Syllabus for: S.ITS.2.PR

# F.Y. B.Sc.IT Title: Computer Graphics

# Learning Objective:

To understand the logic used in drawing graphs and to implement it through the use of a programming language.

Course: S.ITS.2.01

# Number of lectures: 75

# <u>UNIT 1</u>

| Introduction to Computer Graphics                                                                      | (13 lectures) |
|--------------------------------------------------------------------------------------------------------|---------------|
| Introduction and application areas of computer graphics,                                               |               |
| Video Display Devices,                                                                                 |               |
| Raster-Scan Systems,                                                                                   |               |
| Random-Scan Systems,                                                                                   |               |
| Input Devices,                                                                                         |               |
| Hard-Copy Devices.                                                                                     |               |
| UNIT 2                                                                                                 |               |
| Algorithms                                                                                             | (13 lectures) |
| Line-drawing Algorithms-DDA Algorithm,                                                                 |               |
| Bresenham's Line Algorithm,                                                                            |               |
| Circle-Generating Algorithms,                                                                          |               |
| Ellipse Generating Algorithms,                                                                         |               |
| Filled Area Primitives.                                                                                |               |
| <u>UNIT 3</u>                                                                                          |               |
| Modeling and Approaches to System Requirements                                                         | (13 lectures) |
| Lines Attributes,                                                                                      |               |
| Curve Attributes,                                                                                      |               |
| Color and Grayscale Levels,                                                                            |               |
| Area-Fill Attributes, Character Attributes,                                                            |               |
| Bundled Attributes,                                                                                    |               |
| Inquiry Functions,                                                                                     |               |
| Antialiasing.                                                                                          |               |
| UNIT 4                                                                                                 |               |
| Two Dimensional Geometric Transformation and Viewing                                                   | (12 lectures) |
| Basic Transformations, Matrix Representations,                                                         |               |
| Composite Transformations, other Transformations-Reflection,                                           |               |
| Shear, Viewing Pipeline, Window-to-Viewport Coordinate Transformation,                                 |               |
| Clipping Operation, Point-Clipping,                                                                    |               |
| Line-Clipping, Polygon Clipping, Curve Clipping,                                                       |               |
| Text Clipping.                                                                                         |               |
| <u>UNIT 5</u>                                                                                          |               |
| Three-Dimensional Concepts                                                                             | (12 lectures) |
| Three-Dimensional Display methods-Parallel Projection,                                                 |               |
| Perspective Projection, Depth Cueing,                                                                  |               |
| Visible Line and Surface Identification,                                                               |               |
| Surface Rendering,                                                                                     |               |
| Three-Dimensional Object Representations- Bezier Curves and Surfaces,<br>B-Spline Curves and Surfaces. |               |

# <u>UNIT 6</u>

# Visible-Surface Detection Methods

(12 lectures)

Classification of Visible-Surface Detection Algorithms, Back-Face Detection, Depth-Sorting Method, Area-Subdivision Method, Image and Object Precision, Z-buffer algorithm, Floating horizons.

# **Continuous Internal Assessment**

Presentation / Developing Games using concepts learnt in CG. Mid Term test.

# List Of Text Books

- 1. "Computer Graphics", Donald Hearn & M. Pauline Baker, Pearson Education.
- 2. "Computer Graphics", A. P. Godse, Technical Publications Pune.

# List Of Recommended Reference Books

- 1. Computer Graphics by Hill Jr
- 2. Computer Graphics, Steven Harrington, McGraw-Hill
- 3. Computer Graphics Principles and Practise, J.D. Foley, A. Van Dam, S.K. Feiner& R. L. Phillips, Addision Wesley
- 4. Principles of Interactive Computer Graphics, William M. Newman, Robert F. Sproull, McGraw-Hill.
- 5. Introduction To Computer Graphics, J.D. Foley, A. Van Dam, S.K. Feiner, J.F. Hughes & R.L. Phillips, Addision Wesley
- 6. Computer Graphics by Rogers.

# F.Y. B.Sc.IT

# Course: S.ITS.2.02

# Title: Applied Mathematics II

# Learning Objective:

To study advanced mathematical concepts used in software development of Computer Graphics, animation, image processing, cryptography, etc.

# Number of lectures: 75

# UNIT 1<br/>Complex Numbers:(13 lectures)Cartesian,<br/>Polar & Exponential form,<br/>De-Moivre's theorem,<br/>Hyperbolic functions,<br/>Logarithms of Complex numbers(13 lectures)UNIT 2<br/>Complex Variables :(13 lectures)Cauchy Riemann Equations,<br/>Conformal Mapping and Bilinear Mapping,<br/>concept of Line Integral,(13 lectures)

| Riemann Integral,                                                        |               |
|--------------------------------------------------------------------------|---------------|
| Singularities –Poles, Evaluation of Residues theorem.                    |               |
| UNIT 3                                                                   |               |
| Laplace Transform                                                        | (13 lectures) |
| - Introduction,                                                          |               |
| Definition,                                                              |               |
| Properties of Laplace Transform,                                         |               |
| Laplace Transform of standard function.                                  |               |
| Inverse Laplace Transform:                                               |               |
| Inverse Laplace Transform,                                               |               |
| Methods of obtaining Inverse Laplace transform,                          |               |
| Laplace transform of Periodic Functions,                                 |               |
| Heavyside Unit-step Function,                                            |               |
| Dirac-delta function (Unit Impulse Function),                            |               |
| Application of Inverse Laplace transform to solve differential equations |               |
| UNIT 4                                                                   |               |
| Differentiation under Integral sign,                                     | (12 lectures) |
| Beta and Gamma Functions,                                                |               |
| Properties and Duplication Formula,                                      |               |
| Error Functions                                                          |               |
| <u>UNIT 5</u>                                                            |               |
| Fourier Series                                                           | (12 lectures) |
| Fourier Series,                                                          |               |
| Change of Interval,                                                      |               |
| Even and odd functions,                                                  |               |
| Half range expansions.                                                   |               |
| Fourier Transform and Inverse Fourier Transform:                         |               |
| Fourier transform of Even and Odd functions,                             |               |
| Fourier Transform of sine and cosine functions                           |               |
| Files                                                                    |               |
| <u>UNIT 6</u>                                                            |               |
| Integral Calculus                                                        | (12 lectures) |
| Double Integral,                                                         |               |
| Area,                                                                    |               |
| Triple Integral,                                                         |               |
| Volume                                                                   |               |
| Continuous Internal Assessment                                           |               |

Assignments / Problem solving test Mid Term test.

# List Of Text Books

- 1. Engineering Mathematics A tutorial approach by R. R. Singh and Mukul Bhatt, TMH
- 2. Differential Calculus by Shanti Narayan.
- 3. B. S. Grewal, "Higher Engineering Mathematics.
- 4. Advanced Engineering Mathematics: R.K.Jain, S.R.K. Iyengar, Narosa Publishing House.
- 5. Engineering Mathematics : T Veerajan, Tata McGraw-Hill
- 6. Integral Transforms: A. R. Vasishta, Dr. R.K. Gupta, KrishnaPrakashanMandir

# F.Y. B.Sc.IT

•

Course: S.ITS.2.03

# **Title: Microprocessor and Microcontrollers**

#### Learning Objective:

To understand the architecture and functioning of a microprocessor and a microcontroller which are the prototypes of the modern large computers.

# Number of lectures: 75

| <u>UNIT 1</u>                                           |               |
|---------------------------------------------------------|---------------|
| Logic devices                                           | (13 lectures) |
| Tristate devices,                                       |               |
| buffers, encoder,                                       |               |
| decoder, latches,                                       |               |
| Types of memories,                                      |               |
| memory organization,                                    |               |
| concept of control lines such as read/write chip enable |               |
| <u>UNIT 2</u>                                           |               |
| Introduction to 8085 microprocessor                     | (13 lectures) |
| Organization of Microprocessor based system,            |               |
| 8085 µp Architecture,                                   |               |
| Concept of Address line and Memory Interfacing,         |               |
| Address Decoding and Memory Interfacing,                |               |
| UNIT 3                                                  |               |
| 8085 Programming Model                                  | (13 lectures) |
| Instruction Classification,                             |               |
| Instruction Format,                                     |               |
| 8085 Instruction Set                                    |               |
| <u>UNIT 4</u>                                           |               |
| Introduction to Modern day Computer Systems             | (12 lectures) |
| Organization and Architecture, Structure and function.  |               |
| System Buses                                            |               |
| Computer Components,                                    |               |
| Computer function,                                      |               |
| PCI                                                     |               |
| Features of PCI bus,                                    |               |
| Why PCI bus is needed?                                  |               |
| Concept of PCI Arbitration.                             |               |
| Internal Memory                                         |               |
| Concept of Cache Memory,                                |               |
| Methods of Cache Mapping,                               |               |
| Concept and need for Cache coherency.                   |               |
| External Memory                                         |               |
| RAID.                                                   |               |
| UNIT 5                                                  |               |
| The 8051 Microcontroller                                | (12 lectures) |
|                                                         |               |

Introduction and overview of 8051 family, 8051 Assembly Language Programming, Jumps. Loops and call instructions.

# UNIT 6

# **Interfacing the 8051 Microcontroller**

(12 lectures)

8051 I/O port programming, Addressing Modes, Arithmetic and Logical instructions

# **Continuous Internal Assessment**

Assignments / Project Mid Term test

# List Of Text Books

- 1. William Stallings, "ComputerOrganisation and Architecture" (4<sup>th</sup> Edition)- PHI,1998.
- 2. Andrew C. Tanenbaum, "Structured Computer Organisation" (3rd Edition) -, PHI.
- 3. Computer System Architecture M. Morris Memo, PHI, 1998.
- 4. John P Hayes, "Computer Architecture and Organisation" McGraw Hill, 1998.
- 5. Digital Computer Fundamentals, Malvino Microprocessor Architecture and R.S. Gaonkar, PRI (3<sup>rd</sup> Edition) Programming and Applications with the 8085,
- 6. Digital Computer Fundamentals, Thomas C Bartee, TMG
- 7. The 8051 Microcontroller and Embedded systems by M. A. Mazidi, J. G. Mazidi and R. D.
- 8. McKinlay, Pearson Education.

# F.Y. B.Sc.IT

#### Course: S.ITS.2.04

# Title: Data Base Management Systems (DBMS)

# Learning Objective:

To learn the concept of database systems and software techniques for manipulating and maintaining databases.

#### Number of lectures: 75

| <u>UNIT 1</u>                                             |               |
|-----------------------------------------------------------|---------------|
| Introduction to Databases and Transactions                | (13 lectures) |
| What is database system,                                  |               |
| purpose of database system,                               |               |
| view of data, relational databases,                       |               |
| database architecture, transaction management             |               |
| <u>UNIT 2</u>                                             |               |
| Data Models                                               | (13 lectures) |
| The importance of data models,                            |               |
| Basic building blocks, Business rules,                    |               |
| The evolution of data models,                             |               |
| Degrees of data abstraction.                              |               |
| <u>UNIT 3</u>                                             |               |
| Database Design, ER-Diagram and Unified Modeling Language | (13 lectures) |
| Database design and ER Model:                             |               |
| overview, ER-Model, Constraints,                          |               |
| ER-Diagrams, ERD Issues,                                  |               |
| weak entity sets, Codd's rules,                           |               |
| Relational Schemas, Introduction to UML                   |               |
| Relational database model:                                |               |
| Logical view of data, keys, integrity rules.              |               |
| Relational Database design:                               |               |
| Features of good relational database design,              |               |
| Atomic domain and Normalization                           |               |
| 1NF, 2NF, 3NF, BCNF                                       |               |
| <u>UNIT 4</u>                                             |               |
| Relational Algebra and Calculus                           | (12 lectures) |
| Relational algebra:                                       |               |
| introduction, Selection and projection,                   |               |
| set operations, renaming, Joins,                          |               |
| Division, syntax, semantics.                              |               |
| Operators, grouping and ungrouping,                       |               |
| relational comparison.                                    |               |
| Calculus:                                                 |               |
| Tuple relational calculus,                                |               |
| Domain relational Calculus,                               |               |
| calculus vs algebra,                                      |               |
| computational capabilities.                               |               |
| <u>UNIT 5</u>                                             |               |
| Constraints, Views and SQL                                | (12 lectures) |

What is constraints? types of constrains, Integrity constraints, Views: Introduction to views, data independence, security, updates on views, comparison between tables and views SQL: data definition, aggregate function, Null Values, nested sub queries, Joined relations. Triggers. UNIT 6 **Transaction management and Concurrency control** (12 lectures) **Transaction management:** ACID properties, serializability and concurrency control, Lock based concurrency control (2PL, Deadlocks), Time stamping methods, optimistic methods, Database recovery management

**Continuous Internal Assessment** 

Assignments / Project Mid Term test.

#### List Of Text Books

1. A Silberschatz, H Korth, S Sudarshan, "Database System and Concepts", fifth Edition McGraw-Hill,

2. Rob, Coronel, "Database Systems", Seventh Edition, Cengage Learning

# F.Y. B.Sc.IT

#### Course: S.ITS.2.05

#### **Title: Data Communication and network standards**

#### **Learning Objective:**

To study the process of networking computers and to study the data transfer process from one computer to another using networks.

# Number of lectures: 75

#### <u>UNIT 1</u>

# Introduction to data communications and networking

Introduction, Fundamental concepts, Data communications, Protocol, standards, standard organizations, signal propagation, analog and digital signals, bandwidth of signal and a medium, Fourier analysis and the concept of bandwidth of a signal, (13 lectures)

| The data transmission rate and bandwidth.                    |               |
|--------------------------------------------------------------|---------------|
| <u>UNIT 2</u><br>Naturaly Modela                             | (12 loctures) |
| Incluor Kinodels                                             | (15 lectures) |
| Layered Tasks, The OSI reference model,                      |               |
| Layers in the OSI reference model,                           |               |
| ICP/IP protocol suite, Addressing IPv4                       |               |
| UNIT 3                                                       |               |
| Information Encoding, Errors Detection and Correction        | (13 lectures) |
| Introduction, representing different symbols,                |               |
| Minimizing errors, Multimedia,                               |               |
| Multimedia and Data compression.                             |               |
| Error classification, types of errors,                       |               |
| redundancy, detection versus correction,                     |               |
| hamming distance, cyclic redundancy check                    |               |
| <u>UNIT 4</u>                                                |               |
| Media and Transmission modes                                 | (12 lectures) |
| Data and signals, Periodic analog signals,                   |               |
| Digital signals, Transmission impairment,                    |               |
| Data rate limits, Performance,                               |               |
| Digital to digital, Analog to digital conversion,            |               |
| Transmission modes, Digital to analog conversion,            |               |
| Analog to analog conversion, Guided media and Unguided media |               |
| UNIT 5                                                       |               |
| Network topologies ,Switching and routing algorithms         | (12 lectures) |
| Mesh, star, tree, ring, bus, hybrid,                         |               |
| switching basics, circuit switching,                         |               |
| packet switching and Message switching.                      |               |
| routing algorithms.                                          |               |
| UNIT 6                                                       |               |
| IP version 6                                                 | (12 lectures) |
| Overview Terminology IPv6 addresses                          | (12 10000105) |
| Special addresses IP v 6 header formats                      |               |
| IPv6 extension headers IPv6 auto configuration               |               |
| configuration via DHCP v6, IPv6 transition                   |               |
| Continuous Internal Assessment                               |               |

# **Continuous Internal Assessment**

Assignments / Project Mid Term test

# List Of Text Books

- 1. Behrouz A Forouzan, "*Data communications and Networking*", Fourth Edition, Mc-Graw Hill
- 2. AchyutGodbole, "Data communications and Networks, TMH
- 3. Dr.SidnieFeit, "TCP/IP", Second Edition, TMH

# List Of Recommended Reference Books

W.Stallings,"Data and Computer Communications", Eight Edition, Pearson Education

F.Y. B.Sc.IT

**Course : S.ITS.2.PR** 

Practical I:

# COMPUTER GRAPHICS MICROPROCESSOR AND MICROCONTROLLERS

Number of lectures: 45

# **COMPUTER GRAPHICS**

Learning Objective: To develop a program to implement following algorithms

For 1<sup>st</sup> part of the course (1.5 credits) a minimum of 8 programs should be executed. A journal of the printouts of the programs and its output should be maintained. Certified journal will have to be presented at the time of practical exam.

# Modern Operating System practical list

- I) Write a program to implement the DDA Algorithm.
- II) Write a program to implement the Bresenham's Algorithm.
- III) Write a program to implement the Mid-point Circle Algorithm.
- IV) Write a program to implement the Ellipse Algorithm.
- V) Write a program to implement the Pie-Algorithm.
- VI) Write a program to design any given pattern.
- VII) Write a program to implement the 2D Translation Concept.
- VIII) Write a program to implement Translation Concept.
- IX) Write a program to implement Scaling Concept.
- X) Write a program to implement Reflection Concept.
- XI) Write a program to implement the Cohen-Sutherland Line Clipping Concept.
- XII) Write a program to implement the Bezier Curve

# MICROPROCESSOR AND MICROCONTROLLERS

# Learning Objective:

To be able to develop and execute assembly language programs for microprocessors and microcontrollers.

# 8085 programs:

- I) Simple 8-bit and 16-bit addition and subtraction
- II) Transfer a block of data from one location to another.
- III) Find the largest/smallest of the numbers stored at one location.
- IV) Addition of 10 numbers.
- V) Multiplication of 8-bit and 16-bit numbers.

VI) BCD addition

# 8051 programs:

- I) To search a number from a given set of numbers. The end of the data is indicated by 00.
- II) Finding the average of signed numbers.
- III) Multiplication of signed numbers.
- IV) Convert the BCD 0111 0101 number to two binary numbers and transfer this number to registers.

# **Continuous Internal Assessment**

MCQ / Viva test during practicals Mid Term practical test.

# Practical II: DATA BASE MANAGEMENT SYSTEMS (DBMS)

#### Number of lectures: 45

**Learning Objective**: To be able to design and develop a dynamic database system and design queries to extract information and update and modify the data base.

For a 1.5 credit course a minimum of 8 programs should be executed. A journal of the printouts of the programs and its output should be maintained. Certified journal will have to be presented at the time of practical exam.

# **DBMS** practical list

- I) Design a Database and create required tables. For e.g. Bank, College Database
- II) Apply the constraints like Primary Key, Foreign key, NOT NULL to the tables.
- III) Write a SQL statement for implementing ALTER, UPDATE and DELETE
- IV) Write the queries to implement the joins
- V) Write the query for implementing the following functions:
  - MAX(),MIN(),AVG(),COUNT()
- VI) Write the query to implement the concept of Integrity constrains
- VII) Write the query to create the views
- VIII) Perform the queries for triggers
- IX) Perform the following operation for demonstrating the insertion, updation and deletion using the referential integrity constraints
- X) Write the query for creating the users and their role.